The electric fields of two plane electromagnetic plane waves in vacuum are given by

 $\vec{\rm E}_1 = {\rm E}_0 \hat{j} \cos(\omega t - kx)$ and $\vec{\rm E}_2 = {\rm E}_0 \hat{k} \cos(\omega t - ky)$. At t = 0, a particle of charge q is at origin with a velocity $\vec{v} = 0.8 c \hat{j}$ (c is the speed of light in vacuum). The instantaneous force experienced by the particle is:

[9 Jan 2020, I]

(a)
$$E_0 q(0.8\hat{i} - \hat{j} + 0.4\hat{k})$$
 (b) $E_0 q(0.4\hat{i} - 3\hat{j} + 0.8\hat{k})$

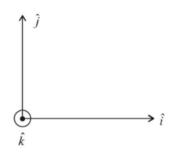
(c)
$$E_0 q(-0.8\hat{i} + \hat{j} + \hat{k})$$
 (d) $E_0 q(0.8\hat{i} + \hat{j} + 0.2\hat{k})$

(d) Given: $\vec{E}_1 = E_0 \hat{j} \cos(\omega t - kx)$

i.e., Travelling in +ve x-direction $\vec{E} \times \vec{B}$ should be in x-direction

$$\vec{B}$$
 is in \hat{K}

$$\vec{B}_1 = \frac{E_0}{C} \cos(\omega t - kx) \hat{k} \quad \left(\because B_0 = \frac{E_0}{C} \right)$$



K

$$\vec{E}_2 = E_0 \hat{k} \cos(\omega t - ky)$$

$$\vec{B}_2 = \frac{E_0}{C} \hat{i} \cos(\omega t - ky)$$

 \therefore Travelling in +ve y-axis $\vec{E} \times \vec{B}$ should be in y-axis

$$\therefore \text{ Net force } \vec{F} = q\vec{E} + q(\vec{v} \times \vec{B})$$

$$q(\vec{E}_1 + \vec{E}_2) + q(0.8c\hat{j} \times (\vec{B}_1 + \vec{B}_2)$$

If
$$t = 0$$
 and $x = y = 0$

$$\vec{E}_1 = E_0 \hat{j} \qquad \vec{E}_2 = E_0 \hat{k}$$

$$\vec{B}_1 = \frac{E_0}{c} \hat{k} \qquad \vec{B}_2 = \frac{E_0}{c} \hat{i}$$

$$\therefore \vec{F}_{\text{net}} = qE_0(\hat{j} + \hat{k}) + q \times 0.8c \times \frac{E_0}{C} \hat{j} \times (\hat{k} + \hat{i})$$

$$=qE_0\left(\hat{j}+\hat{k}\right)+0.8qE_0\left(\hat{i}-\hat{k}\right)$$

$$= qE_0 \left(0.8\hat{i} + \hat{j} + 0.2\hat{k} \right)$$

The electric field of a plane electromagnetic wave is given by

$$\vec{E} = E_0 \frac{\hat{i} + \hat{j}}{\sqrt{2}} \cos(kz + \omega t)$$

At t = 0, a positively charged particle is at the point

$$(x, y, z) = \left(0, 0, \frac{\pi}{k}\right)$$
. If its instantaneous velocity at $(t = 0)$

is $v_0 \hat{k}$, the force acting on it due to the wave is:

[7 Jan 2020, II]

- (a) parallel to $\frac{\hat{i} + \hat{j}}{\sqrt{2}}$ (b) zero
- (c) antiparallel to $\frac{\hat{i} + \hat{j}}{\sqrt{2}}$ (d) parallel to \hat{k}

(c) At
$$t = 0$$
, $z = \frac{\pi}{k}$

$$\vec{E} = \frac{E_0}{\sqrt{2}}(\hat{i} + \hat{j})\cos[\pi] = -\frac{E_0}{\sqrt{2}}(\hat{i} + \hat{j})$$

$$\vec{F}_E = q\vec{E}$$

Force due to electric field will be in the direction $\frac{-(i+j)}{\sqrt{2}}$ Force due to magnetic field is in direction $q(\vec{v} \times \vec{B})$ and $\vec{v} \parallel \vec{k}$. Therefore, it is parallel to \vec{E} .

$$\Rightarrow$$
 $\vec{F}_{net} = \vec{F}_E + \vec{F}_B$ is antiparallel to $\frac{\hat{i} + \hat{j}}{\sqrt{2}}$

An electromagnetic wave is represented by the electric field $\vec{E} = E_0 \hat{n} \sin[\omega t + (6y - 8z)]$. Taking unit vectors in x, y and z directions to be $\hat{i}, \hat{j}, \hat{k}$, the direction of propogation \hat{s} is: [12 April 2019, I]

(a)
$$\hat{s} = \frac{3\hat{i} - 4\hat{j}}{5}$$

(a)
$$\hat{s} = \frac{3\hat{i} - 4\hat{j}}{5}$$
 (b) $\hat{s} = \frac{-4\hat{k} + 3\hat{j}}{5}$

(c)
$$\hat{s} = \left(\frac{-3\hat{j} + 4\hat{k}}{5}\right)$$
 (d) $\hat{s} = \frac{3\hat{j} - 3\hat{k}}{5}$

$$\hat{s} = \frac{3\hat{j} - 3\hat{k}}{5}$$

(c)
$$\hat{S} = \frac{6\hat{j} + 8\hat{k}}{\sqrt{6^2 + 8^2}} = \frac{-3\hat{j} + 4\hat{k}}{5}$$

The magnetic field of a plane electromagnetic wave is given by:

$$\vec{B} = B_0 \hat{i} [\cos(kz - \omega t)] + B_1 \hat{j} \cos(kz + \omega t)$$

Where $B_0 = 3 \times 10^{-5} \,\text{T}$ and $B_1 = 2 \times 10^{-6} \,\text{T}$.

The rms value of the force experienced by a stationary charge $Q = 10^{-4} C$ at z = 0 is closest to: [9 April 2019 I]

(a) $0.6 \, \text{N}$

(b) 0.1 N

(c) $0.9 \,\mathrm{N}$ (d) $3 \times 10^{-2} \,\mathrm{N}$

(a) $B_0 = \sqrt{B_0^2 + B_1^2} = \sqrt{30^2 + 2^2} \times 10^{-6}$ $=30 \times 10^{-6}$ T

$$\therefore E_0 = CB = 3 \times 10^8 \times 30 \times 10^{-6}$$

= $9 \times 10^3 \text{ V/m}$

$$\frac{E_0}{V_2} = \frac{9}{\sqrt{2}} \times 10^3 V / m$$

Force on the charge,

$$F = EQ = \frac{9}{\sqrt{2}} \times 10^3 \times 10^{-4} \simeq 0.64N$$

A plane electromagnetic wave of frequency 50 MHz travels in free space along the positive x-direction. At a particular point in space and time, $\vec{E} = 6.3 \hat{j} V/m$. The corresponding magnetic field $\vec{\mathbf{B}}$, at that point will be:

[9 April 2019 I]

(a)
$$18.9 \times 10^{-8} \text{ k}T$$
 (b) $2.1 \times 10^{-8} \text{ k}T$

(b)
$$2.1 \times 10^{-8} \text{ k/T}$$

(c)
$$6.3 \times 10^{-8} \text{ k}T$$
 (d) $18.9 \times 10^{8} \text{ k}T$

(d)
$$18.9 \times 10^8 \text{ k/T}$$

(b) As we know,

$$|\vec{\mathbf{B}}| = \frac{|\vec{\mathbf{E}}|}{C} = \frac{6.3}{3 \times 10^8} = 2.1 \times 10^{-8} \,\mathrm{T}$$

and
$$\hat{E} \times \hat{B} = \hat{C}$$

$$\hat{J} \times \hat{B} = \hat{i}$$
 [: EM wave travels along +(ve) x-direction.]

$$\therefore \hat{\mathbf{B}} = \hat{\mathbf{k}} \text{ or } \vec{\mathbf{B}} = 2.1 \times 10^{-8} \hat{\mathbf{k}} \text{T}$$